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Many experimental studies have found that human mesenchymal stem cells (MSCs) in long-term culture exhibited enhanced cell
proliferation and prolonged lifespan under hypoxia (around 1%–7% oxygen) against the normoxic condition (about 21% oxygen).
Inspired by the experimental findings, we aimed to investigate the hypoxic effects on MSC expansion quantitatively through
mathematical modeling to elucidate the corresponding biological mechanism. A two-compartment model based on ordinary
differential equations (ODEs), which incorporate cellular division and senescence via state transition, was developed to describe
the MSC expansion process. Parameters of this model were fitted to experimental data and used to interpret the different
proliferative capacities of MSCs under hypoxia and normoxia along with model sensitivity analysis. The proposed model was
tested on data from two separate experimental studies, and it could reproduce the observed growth characteristics in both
conditions. Overall, this compartmental model with a logistic state transition rate was sufficient to explain the experimental
findings and highlighted the promotive role of hypoxia in MSC proliferation. This in silico study suggests that hypoxia can
enhance MSC long-term expansion mainly by delaying replicative senescence, which is indicated by the slowdown of the state
transition rate in our model. Therefore, this explanatory model may provide theoretical proof for the experimentally observed
MSC growth superiority under hypoxia and has the potential to further optimize MSC culture protocols for regenerative
medicine applications.

1. Introduction

Human mesenchymal stem cells (MSCs) are multipotent
stromal cells that are capable of self-renewal and differentia-
tion into various lineages mainly including osteoblasts, chon-
drocytes, and adipocytes. Their major source in vivo is the
bone marrow, and they have also been found in many other
adult tissues such as the adipose tissue, dental pulp, and
umbilical cord [1, 2]. In recent years, MSCs have drawn a

lot of biomedical research interest for their great potential
in regenerative medicine due to their high proliferative ability
and lineage plasticity [3]. Many studies have highlighted the
promise of somatic MSCs as putative therapeutics for a
number of disorders such as osteoarthritis, osteogenesis
imperfecta, and even type II diabetes [1, 4, 5]. Compared
with embryonic stem cells, since MSCs can be directly
obtained from adult individuals, the ethical controversies
associated with stem cell therapies are largely eliminated.
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For a comprehensive review of MSC-based clinical trials
conducted worldwide, one may refer to the recent survey
[4]. As a side note, in literature, the term MSCs may also
refer to mesenchymal stromal cells instead of mesenchymal
stem cells [3, 6]. The main reason for this debate on MSC
definitions is that the isolation of MSCs according to the
current ISCT criteria has produced heterogeneous, nonclo-
nal cultures of stromal cells, including stem cells with differ-
ent multipotent properties [3, 4]. Since the technical
discrimination of mesenchymal stem cells and stromal cells
is out of the scope of this paper, we simply use the term
MSC to specifically describe a cell with documented self-
renewal and differentiation characteristics [3], which is also
consistent with the terminology used in the two experimen-
tal studies from which we obtain the long-term MSC prolif-
eration data [7, 8].

However, although MSCs may be isolated from a variety
of tissue sources, their concentration is still very low. Conse-
quently, it is impossible to collect the large number of MSCs
required for clinical trials purely from a single donor, which
is one of the major limitations in the medical use of MSCs
[9, 10]. Therefore, ex vivo expansion is a necessary step for
the acquisition of sufficient MSCs [2, 4], and many research
efforts have been devoted to the optimization of MSCs cul-
ture protocols, including the composition of the basal culture
medium, the addition of specific growth factors, the seeding
density, and the biophysical environment [11]. In this study,
we focus on the effects of oxygen tension on MSC expansion,
which has been investigated by plentiful experimental studies
[2, 7, 8, 12–15]. While the typical in vivo niche of MSCs, the
bone marrow, is characterized by a low oxygen concentration
(1% to 7%, hypoxia), currently, MSCs are often expanded
under the atmospheric oxygen concentration around 21%
(normoxia) [13]. However, lots of studies have reached a gen-
eral agreement that hypoxia can extend MSC lifespan and
thereby enhance their proliferative efficiency greatly in
long-term culture [8, 14, 16–19]. The intracellular molecular
mechanism of such effects is still unclear, which may involve
oxidative stress [18], gene instability [16], and the regulation
of p53 and p16 [18, 20, 21], but many experimental studies
imply that in principle, hypoxia promotes MSC long-term
expansion by slowing down replicative senescence, that is,
the inherent division limitation of cultured cells even in an
ideal environment [11, 12, 16, 22]. Here, we should remark
that, in literature, a sharp definition of senescent cells is still
lacking since deep understanding of mechanisms that induce
cellular senescence is still missing. In particular, regarding
the biological features in senescence of MSCs, Capasso et al.
have investigated MSC senescence induced by oxidative
stress, doxorubicin treatment, X-ray irradiation, and replica-
tive exhaustion, to determine a specific signature for acute
and replicative senescent MSCs with changes in autophagy,
proteasome activity, and metabolism [6]. In this study, by
cellular senescence, we generally refer to replicative senes-
cence, that is, a limitation in the number of times that normal
cells can divide, which is induced by prolonged periods of
cellular stress, such as continuous proliferation [23]. Despite
the experimental observations about replicative senescence,
we may also suspect that such promotion is caused by a

higher death rate, a lower division rate, or a faster senescence
pace under normoxic conditions. Therefore, to verify this
hypothesis and to interpret the experimental findings about
hypoxic influence on MSC expansion from a theoretical per-
spective, we seek to assess the interplay between replicative
senescence and hypoxia using mathematical modeling and
quantitative analysis.

Mathematical studies of stem cell systems and their pop-
ulation dynamics, such as the computational modeling of
Nanog dynamics in mouse embryonic stem cells [24], the
stress distribution throughout engineered heart muscles
[25], the lineage specification of hematopoietic stem cells
[26], and tumor growth [27], have succeeded in providing
valuable insights and quantitative description of the underly-
ing biological processes. However, regarding MSC expan-
sion, despite the aforementioned numerous experimental
studies, as far as we know, there are only two quantitative
modeling studies in literature closely related with the impact
of oxygen tension on MSC expansion. Lemon et al. proposed
an ordinary differential equation- (ODE-) based model to
describe the proliferation and differentiation of humanMSCs
grown inside artificial porous scaffolds under different oxy-
gen concentrations [28]. However, their study was conducted
in the context of 3D culture of MSCs inside scaffolds, and
their model was formulated around the limited porous vol-
ume and the oxygen-dependent secretion of extracellular
matrix (ECM). Obviously, such context differs significantly
from the common 2D expansion in labs since cells are usually
subcultured before confluence, making space not a limita-
tion. In the other study performed by Krinner et al. [29],
an individual cell-based stochastic model was constructed
for pellet cultures of MSCs to describe their expansion and
chondrogenic differentiation, assuming that the oxygen-
dependent cell state fluctuations are reversible. Their model
is mainly concerned with MSC lineage commitment and the
consequent cell population structure. In short, neither of the
two studies focuses on the relation between oxygen tension
and replicative senescence explicitly. Hence, a concise and
easy-to-understand mathematical model is of great need to
help elucidate the underlying mechanism of oxygen influ-
ence on MSC expansion in vitro.

To this end, the purpose of our study is to develop a
powerful, yet highly interpretable mathematical model to
describe the long-term population dynamics of MSCs com-
monly cultured in 2D environment, like Petri dishes, and to
evaluate the potential influence of hypoxia on replicative
senescence quantitatively. As we shall see, starting from some
simple assumptions rooted in experimental observations, our
model is sufficient to accurately reproduce the MSC prolifer-
ation behavior in long-term culture and to clearly explain the
remarkable difference of MSC expansion capacity under hyp-
oxic and normoxic conditions.

2. Methods

Ordinary differential equation (ODE) is the most ortho-
dox method to model system dynamics, for example, the
classic model for tumor growth predication [27], the compu-
tational modeling of megakaryocytic differentiation [30], and
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mathematical models to study stem cell population dynamics
and stem cell niche regulation [31]. In this section, we will
first determine the variables in the ODE system depicting
MSC expansion according to existing experimental evidence,
then build a two-compartment model composed of two cel-
lular states, and conduct subsequent parameter identifica-
tion, whose details are described in the following subsections.

2.1. Model Assumption and Experimental Evidence. Moti-
vated by the fact that MSCs have only a limited lifespan in
long-term culture, the main assumption of our model is that
oxygen tension can influence the progression of replicative
senescence during MSC aging. For example, it was observed
that most of the MSCs cultured under normoxic conditions
were in senescence after 100 days, while fewer senescent cells
were identified for those in hypoxic culture, leading to an
additional 8–20 population doublings under hypoxia. Such
possible inhibiting effect of hypoxia on replicative senescence
has been reported in many experimental investigations,
though various reasons were speculated to explain this phe-
nomenon [12, 16]. For instance, Estrada and his colleagues
attributed this extended lifespan of MSCs at lower oxygen
tensions to the reduced oxidative stress and thereby lessened
DNA damage [16]. Other researchers concluded that the
change of MSC self-renewal competence was caused by the
downregulation of p16 and p21 under hypoxia or the upreg-
ulation of p53 under normoxia, supported by observations in
both short-term and long-term cultures [17, 18, 21]. In this
present work, unlike common experimental studies which
try to identify the specific molecules dominating cellular
response to hypoxia, we placed our research at the cell popu-
lation level and designed a mathematical model by taking
mainly three factors which may possibly affect cell expansion
efficiency into consideration, including the cell division rate,
the cell death (apoptosis) rate, and the replicative senescence
rate. Then, we attempted to substantiate the statement that
the growth advantage of MSCs in long-term expansion under
hypoxia is mainly attributed to the delayed replicative senes-
cence by quantitative analysis of experimental data using our
mathematical model.

2.2. Two-Compartment ODE-Based Model. By its formal def-
inition, a multicompartment model is a mathematical model
used to depict the material or energy transmission among the
compartments of a system, where each compartment is con-
sidered as a homogeneous entity [32]. Based on the experi-
mental observations, there are at least two kinds of MSCs,
that is, two homogeneous entities, to be considered in this
MSC expansion model: the proliferating and senescent ones.
Thus, we developed a two-compartment ODE-based model
to incorporate the two cell states and to depict the possible
transitions between them. Typically, only few MSCs may dif-
ferentiate spontaneously in ex vivo expansion unless induced
with lineage-specific mediums on purpose [33, 34]. There-
fore, cells that cease growth during expansion are mainly
senescent ones rather than committed ones. Nonetheless,
for comprehensiveness, our model defines two more general
cell states, termed dividing and nondividing cells, of which
the latter is mainly composed of senescent cells. Additionally,

because replicative senescence is an irreversible permanent
cell cycle arrest [22], only cellular state transition from the
dividing compartment to the nondividing compartment is
allowed in this model. Besides, cells may undergo apoptosis
to death in both states. Overall, the concept schematic of
our model is illustrated in Figure 1, and the associated gov-
erning equations are as follows:

x1 t = r11x1 t − r10x1 t − r12 t x1 t ,
x2 t = r12 t x1 t − r20x2 t ,

1

where x1 t and x2 t represent the dividing and nondividing
subpopulations, respectively, whose time derivatives are
denoted by x1 t and x2 t correspondingly. In addition,
the division rate r11 of dividing cells and the death rate of
the two subpopulations, r10 and r20, are all assumed to be
time independent, that is, constants. This is a widely adopted
hypothesis in cell-modeling studies [30, 35–37], since these
parameters usually do not change significantly with time,
whereas using constant parameters can greatly simplify the
mathematics and hence highlight the most important part
of the model.

The most interesting and crucial component of our
model is the state transition rate r12 t , which is a time-
varying function to embody our key assumption about the
influence of oxygen tension on replicative senescence. It
should be emphasized that, at the population level, senes-
cence is a continuous process instead of a simple off/on
binary switch due to the heterogeneity of cells [37–39]. Fur-
thermore, taking the essential features of senescence into
account [22, 38], we require the function r12 t to possess
another two properties: (i) it should be low at the early stage
and increases monotonically as cells age and (ii) it must have
a limited upper bound for biological feasibility. Thus, the
well-known logistic function came to our mind as a qualified
candidate for state transition rate r12 t , whose general form
is as follows:

r12 t = L

1 + e−k t−T , 2

where L denotes the upper bound, k depicts the steepness,
and T is the midpoint of the sigmoid curve. Visually, r12 t
is shaped by these three parameters, as depicted in Figure 2
using fictitious parameter values as an example.

In experiments of MSC expansion in vitro, usually only
the total number of cells can be counted directly instead of
the two separate subpopulations. Let y t be the total cell
number, which is the sum of x1 t and x2 t . To facilitate
the subsequent parameter identification, the two constants,
r11 and r10, in (1) are combined into a single quantity, r1 ≜
r11 − r10, denoting the net division rate. Then, the overall
MSC proliferation model in (1) can be rewritten into a con-
cise state-space form by the following:

x1 t

x2 t
=

r1 − r12 t 0
r12 t −r20

x1 t

x2 t
,

y t = x1 t + x2 t ,
3
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which is essentially a time-variant second-order linear sys-
tem due to the time-varying nature of r12 t . Generally, we
cannot find a closed-loop solution for y t in such systems.
Instead, it can be solved by numerical methods [40].

2.3. Model Parameter Fitting. There are five parameters to be
determined in the model (3). We thereby gather them into a
parameter vector, θ = r1,  r20,   L, k, T , and then iden-
tify their values by fitting to the experimental data D = ym

ti ,  i = 1, 2,… ,N , where ym ti is the total cell number
measured at ti. The parameters are estimated in the com-
mon least-squares sense, that is, to minimize the following
cost function:

J θ = 〠
N

i=1
y ti − ym ti

2, 4

which is the sum of squared residuals. Moreover, we must
enforce the biological feasibility of these parameters by
imposing proper constraints. Obviously, the three rate
parameters r1, r20, and L should all be positive but cannot

be too large for a practical biological system. Besides, a too
large steepness k will make the logistic function r12 t behave
more like a step function (Figure 2), which is undesirable
because as aforementioned, senescence is a continuous pro-
cess instead of an abrupt change.

To summarize, after imposing constraints on the param-
eters, the model parameter fitting is formulated as a con-
strained optimization problem denoted by the following:

min  J θ = 〠
N

i=1
y ti − ym ti

2,

Subject to 

0 < r1 < 1,
0 < r20 < 1,
r1 < L < 1,
0 < k < 1,
0 < T < ts,

5

where r1, r20, L, and k are all assigned a very loose upper
bound and ts is the time when most cells are observed to
cease proliferation experimentally. The additional relation
r1 < L stems from the stability requirement of the system
(3), that is, we require r1 − r12 t < 0 for certain t > tc such
that the cell population is prohibited from explosion to infin-
ity [41].

By definition, the optimization in (5) is a nonlinear
regression problem, which is generally solved through suc-
cessive iterations [42]. First, given initial conditions, the
numerical solution of y t in the model (3) for each time
point ti can be obtained by numerical ODE solvers like the
Runge-Kutta method. Then, after we get y ti , we can tackle
the optimization problem (5) with some iterative nonlinear
optimization algorithms such as the Nelder-Mead simplex
search approach. The general workflow of parameter fitting
through nonlinear optimization in this study is shown in
Figure 3. For practical implementations, we may resort to
MATLAB (The MathWorks Inc.) and use its built-in func-
tions such as ode45, fminsearch, and fmincon [27, 28, 43].
More details will be covered in the following parts with
respect to specific datasets.

3. Results

In this section, we first investigated our model with two
experimental datasets collected from MSC long-term prolif-
eration in vitro to examine whether this model could repro-
duce the observed growth curves and explain the disparity
of growth capacity under hypoxia and normoxia. After that,
a sensitivity analysis study was performed to reveal which
of these parameters have the most significant influence on
the population dynamics.

3.1. Collection of Experimental Data. We considered two
experiments in literate regarding long-term expansion and
differentiation of human MSCs, termed experiment A and
experiment B hereafter. In experiment A, Fehrer and her col-
leagues cultured MSCs up to about 120 days at 3% oxygen

Death Death

Dividing
cells x1 (t)

Nondividing
cells x2 (t) 

r12 (t)

r10 r20

r11

Figure 1: Schematic representation of the two-compartment model.
This model conceptualizes the transition of MSCs from the
originally dividing state x1 to the ultimately nondividing state x2.
Cells in both states may die due to internal or external stimuli. r11
is the division rate, while r10 and r20 are the death rate of cells in
the two states, respectively, all treated as constants. r12 t is the
time-varying state transition rate.

T

L

Slope = kL4

0
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0.8
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r 12

5 10 15 200
t

Figure 2: Illustration of the logistic function. It is the form of the
state transition rate r12 t in the two-compartment model, where
T is the midpoint and L specifies the upper bound, while k can be
used to tune the steepness of the sigmoid curve. The slope of the
tangent, that is, the derivative of r12 t at t = T , is also shown by
the dashed line.
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(hypoxia) and 20% oxygen (normoxia), respectively [7]. In
experiment B, to develop a superior protocol for MSC expan-
sion by combining low-density and hypoxic culture, Tsai
et al. studied MSCs from 3 donors under normoxic (21%
oxygen) and hypoxic (1% oxygen) conditions for about 90
days [8]. Since we focus onMSC expansion in this study, only
the proliferation data from the two studies without differen-
tiation induction were adopted. To automatically and accu-
rately extract the experimental data published as figures in
these two articles [7, 8], the online tool WebPlotDigitizer
v3.12 (https://automeris.io/WebPlotDigitizer/) was utilized.

3.2. Experiment A. The experimental data was extracted from
Figure 3(a) in the paper [7] including two growth curves of
bone marrow-derived MSCs, one from a female donor of
age 56 and the other from a 78-year-old male donor,
expanded in both oxygen conditions. Since the two datasets
are quite similar, here we only show the model fitting and
analysis results for the first growth curve (from the female
donor of age 56), which includes six measurements for each
oxygen condition (Figure 4), and put the other in the Supple-
mentary Materials (Figures S1–S3, Table S1). In consistency
with the original paper [7], in this study, the cell number is
evaluated by cumulative population doublings (PD), an
analogy to the logarithmic scale, defined as follows:

yPD t = log2
y t
y 0 , 6

where y 0 is the initial cell number, y t the cell number,
and yPD t the corresponding PD at time t.

Now with the six measurements ymPD ti at hand, i = 1,
2,… , 6, to conduct model parameter fitting, we additionally
need the initial cell numbers of the two subpopulations, x1 0
and x2 0 , to solve the ODE model (3). However, typically in
practice, the precise value of x1 0 and x2 0 cannot be mea-
sured directly. Fortunately, at the beginning, senescent cells
only took up a very small portion, observed by checking their
morphological appearance, which was further confirmed

Try an initial guess of the parameters 𝝷0

Given 𝝷, solve the ODEs in model (3) to get y(ti)
for i = 1, 2, ⋯ , N

Update 𝝷 sin optimization problem (5) using a
certain algorithm by inserting y(ti) and ym(ti)

Get the minimizer from the starting value 𝝷0
𝝷 = min J(𝝷)

𝝷

Get the final optimal solution corresponding to
the minimum objective value among all trials

𝝷⁎ = min J(𝝷)
𝝷

Grid
search

Nonlinear
optimization
solver

Figure 3: Workflow of parameter fitting via nonlinear regression. First, given initial conditions, we can solve the time-variant ODEs in our
model (3) by numerical ODE solvers to get the model predications y ti for N time points in interest. Then, the constrained optimization
problem (5) for parameter fitting can be tackled with iterative nonlinear optimization algorithms, for instance, the Nelder-Mead simplex
search approach (like the fminsearch, fmincon, or lsqcurvefit functions in MATLAB). Here, it should be noted that to avoid the possible
bad local minima associated with nonlinear, nonconvex optimization problems, we may need to try multiple initial guesses of the
parameter vector θ0. We use a systematic approach based on grid search to coordinate multiple initial value trials [44], thanks to the
low dimension and small dataset size in this study. This approach can increase the probability that we find the global minimum or at
least a good local minimum close to the global one. A detailed description of the fitting procedures is provided in Supplementary Materials
(available here).
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through assessment of specific senescence markers [7].
Therefore, we simply assumed that all cells were dividing ini-
tially, that is, x1 0 = y 0 and x2 0 = 0. Then, we can fit the
five parameters in our model (3) by minimizing the con-
strained cost function in (5) with nonlinear least-squares
optimization algorithm such as fmincon or fminsearch in
MATLAB. The fitted parameters for the two conditions are
listed in Table 1. By inserting these fitted parameter values,
we simulated the MSC proliferation process numerically
using the model (3). Figure 4 shows the comparison between
model-predicted and experimentally measured MSC expan-
sion dynamics under hypoxia and normoxia.

Notably in Figure 4, our model can fit the experimental
data in both two conditions nearly perfectly. This impressive
fitting performance implies that the logistic function is a
good candidate to model the oxygen tension-dependent and
time-variant replicative senescence progression process.With
this key component, our two-compartment model can well
describe theMSC proliferation dynamics in both oxygen con-
ditions with enough explanatory power. Although other func-
tions like the generalized logistic model and the Gompertz
model can also display a sigmoid curve, we choose the simple
logistic function in our model according to the Occam’s razor
principle. It is also noted that more complex functions usually
have more parameters, which may compromise the interpret-
ability of the theoretical model since it is hard to endow all the
parameters with proper biological meanings.

To further verify this argument, we examined the pro-
portion of the dividing and nondividing cells in the whole
culture process with data simulated by our model (3), pre-
sented in Figure 5. Apparently, almost all MSCs are dividing
at the early stage, while the nondividing fraction keeps
increasing until most of the cells cease division at the end.
Therefore, in agreement with the qualitative experimental
findings [7], at population level cells gradually lose their
proliferative capability along with their aging. Furthermore,
Figure 5 shows that cells under normoxia cease growth
much earlier than hypoxic cells. After approximately 50
days, only half of the cells keep dividing under normoxia
(Figure 5(b)), while such decline does not happen until
about 75 days in hypoxic culture (Figure 5(a)). There is no
doubt that such delay of replicative senescence about 25
days will contribute to significantly more population dou-
blings in MSC expansion. This fact further confirms that
replicative senescence is indeed slowed down under hypoxia
in consistency with multiple experimental observations that
considerably more senescent cells are detected in normoxic
culture [7, 8, 20, 33].

To acquire a deeper insight of the above observed phe-
nomena, we continued to probe the time evolution of the
state transition rate r12 t , defined in (2), under the two oxy-
gen conditions. Figure 6 shows the comparison of the state
transition rate r12 t simulated numerically using the two
sets of parameters in Table 1 for hypoxic and normoxic con-
ditions, respectively. To assess the pace of replicative senes-
cence quantitatively, the midpoint time T may act as a
good indicator of the senescence pace or roughly the onset
of massive senescence at population level, since replicative
senescence is a continuous process. We notice Tn = 47 35

and Th = 72 37 for normoxia and hypoxia, respectively,
which clearly exposes the delay of replicative senescence
under hypoxia. Here, though the steepness k is close, one
may be still wondering the role of L since it looks somewhat
different in the two conditions as well (Figure 6). To further
check its effect, we deliberately set Th = Tn in the two condi-
tions and ran simulations again. Results show that, unlike
Figure 4, the model predications under hypoxia with such
parameters deviate far away from the experimental data
(Figure S4). Thus, this inconformity proves the dominant
role of T in causing MSC expansion disparity in the two
conditions. In fact, it is easy to see from Figure 2 that a larger
L value can only tend to speed up senescence and thereby
inhibit MSC expansion instead of promotion.

As a concluding remark of experiment A, our model tells
that the distinct MSC proliferation efficiency mainly results
from the different senescence pace, indicated by the large dif-
ference of T , in the two conditions. Besides, although we sim-
ply assume all cells are dividing initially in the present results,
the fitted parameter values will remain almost unchanged
and therefore our reasoning still applies, even if the initial
fraction of nondividing cells is not zero, say, 10%, as shown
in Table S2. Next, we will further highlight the competence
of our model with another dataset collected from long-term
MSC expansion, whose data is not as complete as this one.

3.3. Experiment B. Generally, only after a long time of expan-
sion, roughly more than 100 days or 15 passages [7, 16], will
MSCs expanded in vitro completely stop proliferation. Con-
sequently, quite few experimental data are available in litera-
ture for such a long time. The data of experiment B were
extracted from Figure 1(a) in the paper [8] with a culture
period of only 84 days. For consistency, the cell number is
also measured using PD instead of the original fold increase
[8], which can be obtained with the following formula:

yPD tk = log2
y 0 Πk

i=1 f ti
y 0 = 〠

k

i=1
log2 f ti , k = 1, 2,… , 7,

7

where f tk is the fold increase of cell number at time tk.
After such data preprocessing, the experimental data of
experiment B including seven measurements are shown in
Figure 7. We notice that in neither of the two conditions have

Table 1: Model parameter values for normoxic and hypoxic
conditions fitted from MSC expansion data collected in experiment
A. r1: net expansion rate; r20: death rate of nondividing cells; L, k,
and T are the upper bound, the steepness, and the midpoint time
of the logistic state transition rate r12 t , respectively.

Parameter Normoxia Hypoxia

r1 (day
−1) 0.3472 0.3505

r20 (day
−1) 0.0133 0.0183

L (day−1) 0.3588 0.3967

k 0.3169 0.3944

T (day) 47.3494 72.3664
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the expanded MSCs reached the stationary growth phase,
that is, they are still proliferating even at the end, which will
inevitably cause difficulty in model parameter fitting, espe-
cially for the hypoxic case. To examine the universality of
the model structure and model characteristics we found in
experiment A, we tried to combine the hypoxic and nor-
moxic data together to identify the model parameters.

Now recall our findings in experiment A (Figure 4). If
most of the cells are actively dividing, particularly under hyp-
oxia, the cell population will exhibit an exponential growth

law, which appears as a straight line when cell numbers are
represented by PD, justified by the following:

yPD t = log2
y t
y 0 ≈ log2

y 0 er1t

y 0 = r1log2e t, 8

where y 0 is the initial cell number and r1 is the net expan-
sion rate of dividing cells. In (8), we simply assume that all
cells are dividing such that there exists y t = x1 t = r1.
Unsurprisingly, we notice that the hypoxic data points in
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Figure 5: Simulation of the dividing and nondividing cell fractions in the two oxygen environments of experiment A. (a) Hypoxia. (b)
Normoxia. Initially (at day 0), it is assumed that all cells are dividing in both two conditions.
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Figure 7: Experimental measurements of cell numbers under
hypoxia and normoxia and the fitting of the hypoxic data with a
linear model in experiment B. The R2 (coefficient of determination)
of this simple linear regression is very close to 1, indicating that
the hypoxic data can be well replicated with the linear model.
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Figure 7 indeed seem to lie on a straight line. Therefore, it is
natural to perform linear regression on the hypoxic data to fit
the straight line’s slope s = r1log2e (Figure 7).

In experiment A, the parameter r1 we have fitted in the
two conditions are approximately equal (Table 1). Thus, it
is reasonable to assign r1 = s/log2e obtained under hypoxia
to its normoxic counterpart. With r1 fixed, it is feasible to
fit the remaining four parameters with the normoxic data.
Nevertheless, for hypoxia, because all experimental data
belong to the exponential growth phase, it is still impossible
to determine a unique optimal set of parameters by fitting
the hypoxic data. To resolve this difficulty, we chose r20, L
under hypoxia identical to the ones we have fitted for nor-
moxia based on our experience in experiment A (Table 1)
and tuned the parameter k manually to match the exponen-
tial grow curve. The parameter fitting results for experiment
B are reported in Table 2.

With the parameter values listed in Table 2, we can sim-
ulate our model to get the proliferation trajectory for MSCs
under normoxia, shown in Figure 8. Once again, the theoret-
ical predications generated by our model, even fitted with
incomplete data (i.e., cells are still proliferating at the end),
show good agreement with the experimental measurements.
Since the parameter T remains unknown for hypoxia
(Table 2) due to the fact that all MSCs under hypoxia are still
in the exponential growth phase, we tested different values of
T to highlight its impact on population dynamics (Figure 8).
Apparently, models with T = 100, 110,or 120 can match the
experimental data equally well. More interestingly, this
cluster of growth curves, varied by only one parameter T ,
exactly demonstrates the paramount influence of T on
MSC proliferative capacity: a delay of T by 10 days can
bring about roughly an additional 7 PD under hypoxia. This
is consistent with our key findings in experiment A, that is,
the distinguished MSC expansion ability in long-term cul-
ture under hypoxia and normoxia is mainly reflected by the
different values of parameter T in our model under these
two conditions.

To summarize our work in experiment B, we have first
successfully fitted our model with only experimental data
before the stationary stage. It is a critical capability of our
model to accomplish not only interpolations but also extrap-
olations with even poor availability of experimental data.
This fact reflects that our model has grasped the dominating
cellular mechanism responsible for the experimental obser-
vations. On the other hand, we must admit that it is unattain-
able to determine a unique set of model parameters if too
little diversity is present in the data because many sets of
parameters can work equally well. For example, with only
exponential-phase cell proliferation data under hypoxia in
this experiment, multiple possible values of T lead to the
same fitting performance (Figure 8). Even so, by examining
various parameter values tentatively, our model still reveals
the pivotal impact of oxygen tension on MSCs expanded
in vitro: hypoxia can delay the onset of MSC senescence
and thus promote their proliferation, implied by the great
influence of T . Finally, as a side note, one may notice that
the parameter values for Experiments A and B are different.
This discrepancy stems from many other variables between

the two experiments (from two independent studies [7, 8]),
for example, the specific culture condition, the growth media,
and the age/sex of the cell donors. It is reasonable to obtain
different parameter values since all these variables may influ-
ence MSC expansion efficiency. However, in each experiment
(A or B), the only control variable between the two condi-
tions (hypoxia and normoxia) is the oxygen tension, and
after fitting our model to the data, the value of the parameter
T under hypoxia is consistently much larger than the one
under normoxia for both experiments.

3.4. Sensitivity Analysis. In above experiments, our two-
compartment model can effectively describe MSC expansion
by approximating replicative senescence with a logistic tran-
sition function. To further assess the impact of parameters on
model outputs, that is, to evaluate which parameters are the

Table 2: Model parameter values for normoxic and hypoxic
conditions fitted from data in experiment B. r1: net expansion
rate; r20: death rate of nondividing cells; L, k, and T are the upper
bound, the steepness, and the midpoint time of the logistic state
transition rate r12 t , respectively.

Parameter Normoxia Hypoxia

r1 (day
−1) 0.4679† 0.4679†

r20 (day
−1) 0.0286 0.0286‡

L (day−1) 0.5864 0.5864‡

k 0.0404 0.15§

T (day) 79.0046 ?¶

†Fitted from hypoxic data using linear regression and set r1 under normoxia
equal to the one for hypoxia. ‡Set equal to their counterparts under
normoxia. §Tuned manually to fit the hypoxic data. ¶To be determined.
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Figure 8: Experimental measurements and model-predicted
population dynamics of MSCs under hypoxia and normoxia in
experiment B. For the series of growth curves under hypoxia, the
first four parameters are fixed (see Table 2), while the last
parameter T varies from 90 to 120 equidistantly to demonstrate its
significant effect on cell proliferation. PD: cumulative population
doublings.
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most influential on the system output when the inputs (the
initial condition) are fixed, we investigated their individual
sensitivity using one of the most widely used evaluation
methods, called one-at-a-time [45]. In this strategy, only
one parameter is varied at a time while all others are fixed
at their nominal (fitted) values; then, the corresponding
change of model output is recorded [37, 45]. To quantify
the parameter sensitivity, each of the five parameters is per-
turbed in turn by a random degree ϵ, where ϵ is uniformly
distributed between −10% and 10%, and the other parame-
ters are fixed at their nominal (fitted) values. Repeat the
parameter perturbation and subsequent model simulation
for K = 1000 times. Then, the sensitivity si of the ith param-
eter is scored by the standard deviation of the model output
ysp (population doublings at the stationary phase) in the total
K runs, given as follows:

si =
1

K − 1〠
K

j=1
ysp,j − μ

2
, 9

where ysp,j is the model output of the jth run and μ = 1/K
∑K

j=1ysp,j is the mean of ysp in the K runs.
In experiment A, we have enough experimental data and

have fitted all the parameters for datasets of two donors, that
is, one female donor of age 56 (Table 1) and another male
donor of age 78 (Table S1). Thus, the sensitivity analysis
was conducted using the model obtained in experiment A.
The outcome is summarized in Figure 9. Despite the various
parameter values in the four cases, their sensitivity distribu-
tion shares a notably common pattern, demonstrating the
inherent consistency of the parameter sensitivity ranking of
our model, even though the absolute values of these parame-
ters are different. This fact indicates that the interpretation of
our model is reasonable even in different experimental set-
tings. Regarding the individual sensitivity, as expected, the
fundamental driving force of MSC proliferation is the net
expansion rate of dividing cells, r1, highlighted as the most
influential parameter, which dominates the exponential
growth phase, as demonstrated in (8). Apart from r1, the sec-
ond predominant parameter is T , which largely determines
the MSC state transition rate from the dividing state to the
nondividing state r12 t . On the contrary, the death rate r20
and the steepness parameter k only exhibit negligible sensi-
tivity (Figure 9).

In brief, though the two parameters r1 and L also possess
noteworthy influence on model outputs (Figure 9), it is only
the parameter T that can explain the impressive difference of
the model output, that is, cell number, under hypoxic and
normoxic conditions (Figure 4, Figure S1) since r1 and L have
close and comparable values in the two conditions (Table 1,
Table S1). However, one may also notice that the value of
r1 is slightly higher under the hypoxic condition (Table 1)
and may suspect its role in promotion of MSC expansion.
To clarify this point, we made another simulation study by
exchanging the r1 values of the two conditions while leaving
the other parameters unchanged. The result is shown in
Figure S5. By comparing Figure S5 with Figure 4 in the

main text, we can see that the fitting results change quite
little, while there is still a large gap between the final popula-
tion size under the two conditions. Thus, we can conclude
that the minute difference of the fitted r1 values plays just a
negligible role and cannot explain the significant difference
of MSC expansion under the two oxygen conditions. Essen-
tially, the largest sensitivity of r1 is attributed to the exponen-
tial growth law in the early stage, see (8). However, the r1
values under the two conditions are so close that they cannot
explain the considerable difference in MSC proliferation. As
for the parameter Lwhich also has a large sensitivity, it is easy
to see from Table 1 and Figure 6 that the larger L value under
hypoxia can only speed up the cellular senescence process
and thereby impede MSC expansion. Thus, this parameter
is definitely not the factor that contributes to MSC prolifera-
tion boosting. By eliminating these possibilities, we can be
certain that it is only the parameter T (increased around
50% from normoxia to hypoxia) that can explain the impres-
sive difference of the cell number under hypoxic and nor-
moxic conditions.

In summary, with the above analysis of the two parame-
ter sets fitted byMSC expansion data under hypoxia and nor-
moxia, respectively (Table 1, Table 2, and Table S1), we can
conclude that it is the parameter T , a qualified indicator of
replicative senescence pace, that is responsible for the distinct
MSC expansion productivity under different oxygen condi-
tions. Thus, combining the parameter magnitude compari-
son and the sensitivity analysis has further strengthened
our main argument and verified the fundamental hypothesis
of our model, that is, hypoxia can promote MSC expansion
through slowdown of replicative senescence, from another
perspective, indicated by the impressive sensitivity of T as
well as the considerable difference of its value under two oxy-
gen conditions.

4. Discussion

Mesenchymal stem cells are considered valuable and easily
accessible cell sources for regenerative medicine due to their
high proliferation capacity, their potential for multiple differ-
entiation pathways, their active paracrine effects, and their
immunomodulatory features for suppression of excessive
immunoreactivity [4, 46–48]. Generally, cell-based therapies
and tissue engineering require a sufficiently large number of
high-quality cells. Accordingly, the efficient ex vivo expan-
sion of MSCs is of critical importance and has drawn a lot
of research interest. In literature, the influence of oxygen ten-
sion on MSC expansion and differentiation has been investi-
gated extensively by many experimental studies (see review
[12, 49]). Despite the abundance of experimental studies, to
the best of our knowledge, our work in this study is the first
attempt to analyze the effects of hypoxia on MSC expansion
in long-term 2D culture through mathematical modeling in
a purely data-driven way. Mathematical reasoning and simu-
lation results have demonstrated that hypoxia can postpone
replicative senescence and consequently extend the lifespan
of MSCs to produce more cells.

There are multiple suspicious factors which might
account for the MSC growth disadvantage when subject to
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a high oxygen tension. For example, we may speculate about
a higher death rate or a lower cell division rate under nor-
moxia, considering the typical in vivo low-oxygen environ-
ment in the bone marrow. To determine the contribution of
such factors, we have encoded these hypotheses as parame-
ters in the two-compartment model and then identified
parameter values by fitting to the experimental data. Results
show that the net expansion rate r1 and the death rate r20
have similar values in both oxygen conditions, implying
that the negligible changes of cellular net division rate and
death are unlikely to be the main cause of MSC expansion
variations. This finding is in agreement with experimental
observations: though cell viability might be slightly higher
under hypoxia, no obvious differences regarding necrosis
or apoptosis were detected experimentally [7, 50]. Besides,
MSCs expanded in vitro can typically maintain a stable
undifferentiated phenotype over time without tumorigene-
sis [33, 48]. Therefore, the plausible variations in the pro-
portion of committed cells arising from different oxygen
tensions cannot explain the dramatically reduced MSC
expansion under normoxia, either. By contrast, numerous
studies have reported that exposure of MSCs to normoxia
can contribute decisively to replicative senescence. They
observed a clearly greater number of enlarged and flattened
cells, the typical morphology of senescent cells, a higher
expression level of senescence markers like SA-β-gal, as well
as a shorter telomere length under normoxia than hypoxia,
while such phenomena would not appear until many more
days later under hypoxia [7, 8, 20, 21]. In our model, because
the upper bound L of the state transition rate r12 t in (2)
are similar in the two oxygen conditions (Table 1 and
Table 2), it is reasonable to consider the midpoint time

parameter T as a representative measurement of the replica-
tive senescence pace. Next, the fitting results and sensitivity
analysis tell that the parameter T varies most between hyp-
oxia and normoxia and possesses very high sensitivity, indi-
cating that the most important variable leading to MSC
expansion difference in low and high oxygen tensions
resides in the replicative senescence progression. In sum-
mary, all the above experimental evidence justifies the find-
ings of our two-compartment model, which state that
hypoxia can greatly enhance MSC proliferation and prolong
their lifespan mainly through inhibition of replicative senes-
cence in long-term culture.

In retrospect, we notice that MSC proliferation displays
the typical S-shaped growth curve, which may also be repre-
sented by others like the exponential-linear or Gompertz
model [27]. However, we must emphasize that such models
were originally designed to describe the overall population
behavior with no discrimination of various cell states. As a
result, though such models with only a single-cell state may
also fit the data satisfactorily, they cannot reveal the inherent
reason which leads to the experimental observations. For
example, the cause of the remarkably different MSC expan-
sion capacity under hypoxia and normoxia would still be
obscure in a single-compartment model. Thus, the primary
merit of our model does not lie in its good fitting of numer-
ical values, though it has demonstrated excellent fitting
performance, but rather in its capacity to interpret the qual-
itative characteristics, to reveal the biological mechanism
and to advance our understanding of the experimental data.
Intuitively, we use the logistic function to approximate the
replicative senescence progression process during cell aging.
Thanks to its high interpretability, the profound impact of

0

Normoxia
Hypoxia

r1 r20
Parameters

L k T

0.5

1.5

1

2.5

2

3

3.5

Se
ns

iti
vi

ty

(a)

Normoxia
Hypoxia

r1 r20
Parameters

L k T
0

0.5

1.5

1

2.5

2

3

3.5

Se
ns

iti
vi

ty

(b)

Figure 9: Parameter sensitivity analysis of the two-compartment model. To evaluate the sensitivity, the parameters are perturbed around
their nominal values fitted in experiment A with cell data collected from two donors in two conditions: (a) MSCs obtained from a
female donor of age 56 and (b) MSCs isolated from a 78-year-old male donor. The exhibited sensitivity is measured by the standard
deviation of model outputs in 1000 simulations with randomly perturbed (between ±10%) parameter values using the one-at-a-time
approach.
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hypoxia on replicative senescence has been uncovered and
confirmed convincingly.

Technically speaking, the model we have developed in
(1) is more of an explanatory model than a predicative
one. Explanatory modeling refers to the application of
models to data for testing causal hypothesis about theoret-
ical constructs [51]. The top priority of explanatory models
is their explanatory power, while predicative modeling
focuses on predicative power or generalization [51]. Thus,
in this study on explanatory modeling, it is the construction
and structure of the model based on biological hypothesis
that matters most, because the acquired model must be
highly interpretable and the parameters should be endowed
with biological meanings. This also constitutes our main
contribution: we discovered that hypoxia can promote
MSC expansion by delaying MSC replicative senescence
merely through quantitative analysis of proliferation data
with a properly designed two-compartment model, with
no need of extra measurements using devoted biological
assays, like the detection of cell viability and senescence
markers, which may be expensive and time-consuming.
Thus, this model is valuable in providing theoretical sup-
port for experimentalists’ observations. In short, though
predictive modeling is forward-looking, explanatory model-
ing is retrospective [51]. Since our model is not developed
for predication purpose, an independent validation experi-
ment is not necessary to test its generalization performance.
However, the explanatory power of our model has been val-
idated on multiple experimental datasets, which all lead to
the same conclusion: hypoxia causes MSC expansion boost-
ing by inhibiting cellular senescence. With an explanatory
model, our study mainly focuses on the comparison of
model parameter values fitted under hypoxia and normoxia
to explain the underlying mechanism. Thus, it is the rela-
tive magnitude of parameters instead of their absolute value
that matters.

To enhance MSC expansion to get enough cells for clin-
ical applications, it is of great interest to determine the opti-
mal oxygen concentration so as to maximize the cell yield.
However, due to lack of experimental data, the oxygen ten-
sion only appears in our model implicitly in the form of hyp-
oxia and normoxia instead of continuous values. Besides, we
want to point out that hypoxia and normoxia refer to two
coarse ranges of oxygen tension instead of precise concen-
tration values: the former depicts the in vivo environment
and the latter represents the atmospheric environment. Con-
sequently, we can only demonstrate the superiority of hyp-
oxia against normoxia for MSC long-term expansion, while
with the currently available data it is impossible to obtain
an accurate predication relationship associating the oxygen
tension with the number of MSCs at a given time point.
Nevertheless, once we acquire more MSC expansion data
systematically at a sequence of oxygen concentrations from
dedicated experiments, our model can be extended readily to
describe the numerical relationship between oxygen tension
and MSC proliferation explicitly. That is, the proposed two-
compartment model can serve as a good prototype to be
extended into a truly predicative model. Afterwards, the
extended model can be used to optimize the oxygen

environment and even to build a closed-loop control system
for more efficient large-scale cell production by tuning the
oxygen tension precisely in real time [52].

Though our model successfully demonstrates that the
promoted expansion and the prolonged lifespan of MSCs
are mainly attributed to the slowdown of replicative senes-
cence at a reduced oxygen tension, we must admit that it is
still a coarse-grained model at the population level and can-
not establish the intracellular molecular mechanism for the
relevant regulation. In fact, the involved signaling pathways
are still controversial and remain to be elucidated, though
many speculate that the key response to hypoxia is mediated
by the hypoxia-inducible factor- (HIF-) 1 and involves the
interaction between p21, p16, and reactive oxygen species
(ROS) [8, 12–14, 17, 20]. Thus, a multiscale model integrating
the population dynamics and the intracellular biochemical
reactions is highly desired to completely dissect the influence
of hypoxia on MSC proliferation and differentiation. Further
theoretical work on involved signal transduction pathways
and gene regulatory networks are planned in our future stud-
ies. Lastly, we want to point out that in literature, the effects of
hypoxia on short-term MSC proliferation may vary in differ-
ent studies, which depend on the concrete oxygen tension,
the culture conditions, and the cell sources. However, the
benefits hypoxia can bring to long-term expansion of MSCs
are consistent among various studies even with different cul-
ture media and MSC sources [14, 16–19, 49]. As we have
addressed since the beginning, our two-compartment model
applies specially to the MSC long-term expansion, where the
interplay between hypoxia and replicative senescence plays
the most important role in determining cell yield.

5. Conclusion

This study underlines the influence of oxygen tension on
MSC long-term expansion, and we have presented here, for
the first time, a comprehensive two-compartment ODE-
based model to characterize the MSC population dynamics
under hypoxia and normoxia. A unique aspect of the current
study is the adoption of the logistic function to depict the
time-variant state transition rate between the two compart-
ments, which is a natural analogy to the continuous senes-
cence progression along with cell aging. Though simplistic
in nature, our model has captured the key characteristics of
the MSC expansion process and provides a computational
basis for deep understanding of the oxygen impacts on
MSC proliferation. In accordance with experimental evi-
dence, this theoretical model supports the idea that hypoxia
can greatly enhance the proliferation of MSCs and prolong
their lifespan in long-term culture through inhibition of rep-
licative senescence. Over the course of this study, we have
demonstrated mathematical modeling and analysis as a use-
ful tool for quantitatively interpreting and mining the infor-
mation hidden in raw experimental data. Since our model
is designed and fitted with MSC expansion data in 2D culture
(Petri dishes), where oxygen is distributed uniformly in the
culture media, it deserves efforts to further explore whether
this model can be generalized to the 3D culture scenario such
as scaffolds.
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Figures S1–S3, corresponding to Table 1 and Figures 4–6
in the main text. Table S2: model parameter values for nor-
moxic and hypoxic conditions fitted from data in experiment
A but with 10% nondividing cells at the beginning. Figure S4:
model fitting results by setting Th = Tn in experiment A
as a comparison to Figure 4 in the main text. Figure
S5: model fitting results by exchanging the net expansion
rate r1 in Table 1 as a contrast of Figure 4 in the main
text. The detailed fitting procedures are also presented.
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